Author Affiliations
Abstract
1 GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, UK
3 INFN-LNF, Via Enrico Fermi 54, 00044Frascati, Italy
4 School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
A petawatt facility fully based on noncollinear optical parametric chirped pulse amplification (NOPCPA) technology, Vulcan OPPEL (Vulcan OPCPA PEtawatt Laser), is presented. This system will be coupled with the existing hybrid-CPA/OPCPA VULCAN laser system (500 J, 500 fs beamline; 250 J, ns regime beamline) based on Nd:glass amplification. Its pulse duration (20 times shorter) combined with the system design will allow the auxiliary beamline and its secondary sources to be used as probe beams for longer pulses and their interactions with targets. The newly designed system will be mainly dedicated to electron beam generation, but could also be used to perform a variety of particle acceleration and optical radiation detection experimental campaigns. In this communication, we present the entire beamline design discussing the technology choices and the design supported by extensive simulations for each system section. Finally, we present experimental results and details of our commissioned NOPCPA picosecond front end, delivering 1.5 mJ, ~180 nm (1/e2) of bandwidth compressed to sub-15 fs.
high-power laser LBO nonlinear crystal nonlinear optics ultra-broadband OPA ultrafast laser 
High Power Laser Science and Engineering
2020, 8(4): 04000e31
Author Affiliations
Abstract
1 GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, UK
3 INFN-LNF, Via Enrico Fermi 54, 00044 Frascati, Italy
We evaluate and demonstrate ultra-broadband near-infrared noncollinear optical parametric amplification in two nonlinear crystals, bismuth borate (BiBO) and yttrium calcium oxyborate (YCOB), which are not commonly used for this application. The spectral bandwidth is of the microjoule level; the amplified signal is ≥ 200 nm, capable of supporting sub-10 fs pulses. These results, supported by numerical simulations, show that these crystals have a great potential as nonlinear media in both low-energy, few-cycle systems and high peak power amplifiers for terawatt to petawatt systems based on noncollinear optical parametric chirped pulse amplification (NOPCPA) or a hybrid.
ultrafast laser high power laser nonlinear optics ultra-broadband noncollinear OPA YCOB and BiBO nonlinear crystal 
High Power Laser Science and Engineering
2020, 8(3): 03000e29
Author Affiliations
Abstract
1 GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2 Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
We demonstrate high efficiency second harmonic generation (SHG) of near infrared femtosecond pulses using a $\text{BiB}_{3}\text{O}_{6}$ crystal in a single-pass tight focusing geometry setup. A frequency doubling efficiency of $63\%$ is achieved, which is, to the best of our knowledge, the highest value ever reported in the femtosecond regime for such low energy (nJ-level) pumping pulses. Theoretical analyses of the pumping scheme focusing waist and the SHG efficiency are performed, by numerically solving the three wave mixing coupled equations in the plane-wave scenario and by running simulations with a commercial full 3D code. Simulations show a good agreement with the experimental data regarding both the efficiency and the pulse spectral profile. The simulated SHG pulse temporal profile presents the characteristic features of the group velocity mismatch broadening in a ‘thick’ crystal.
nonlinear process second harmonic generation pumping scheme parametric amplification/oscillators high power laser 
High Power Laser Science and Engineering
2019, 7(1): 01000e11
Author Affiliations
Abstract
Central Laser Facility, Science and Technology Facilities Council, RAL, Didcot, Oxfordshire OX 11 0QX, UK
In this paper we review the provision of the laser diagnostics that are installed on the Vulcan laser facility. We will present strategies for dealing with the energy of high energy systems and with ways of handling the beam sizes of the lasers. We present data captured during typical experimental campaigns to demonstrate their reliability and variation in shot to shot values.
calorimeter calorimeter high power laser high power laser laser diagnostics laser diagnostics pulse energy pulse energy 
High Power Laser Science and Engineering
2015, 3(3): 03000001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!